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Abstract 
This paper provides a common framework for the 
bond-valence and resonance-bond-number methods, 
both of which explain the principal variations in 
inorganic bond lengths from the sum of radii, as arising 
from the connectivity of the structure, and therefore 
may apply graph information in conjunction with the 
Valence-Sum Rule. Under these constraints, possible 
predictions are limited to specific ranges of (M - N + 1) 
parameters, where M and N are the size and order of a 
multigraph describing the crystal motif. Further restric- 
tions on these parameters may arise from non-crystal- 
lographic graph symmetries. Convenient graph- 
theoretical calculation schemes are described for both 
approaches. As it is possible to identify the best possible 
prediction within the limits described, which is that 
most closely corresponding to the experimental result, 
we have a means of making a direct comparison of the 
effectiveness of the various methods proposed, as well 
as being able to evaluate them against a statistically 
based prediction. The resonance-bond-number method 
proves to be the better predictor in most cases. 
Examples analysed in this way comprise K V O 3  

(potassium metavanadate), ot-Ga203 (gallium oxide), 
TeI4 [tellurium(IV) iodide], Li2SiO3 (lithium metasili- 
cate), Li2GeO3 (lithium metagermanate) and CaCrF5 
(calcium chromium fluoride). 

1. Introduction 
The bond-valence approach to the description of inor- 
ganic crystal structures, originally due to Pauling (1929) 
and Zachariasen (1963), has gained popularity in recent 
years, with the bond-valence/bond-length relations of 
Brown & Shannon (1973) and subsequent improve- 
ments in the applicability of the approach to verifying 
structures (Brown, 1978, 1981; Brown & Altermatt, 
1985). Recently there has been a great deal of interest 
shown in this bond-valence approach because of the 
correlations found with the experimental transition 
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temperatures of high-temperature ceramic super- 
conductors (Brown, 1989, 1990). However, the possi- 
bility of using theoretically predicted bond-valence 
networks as a basis for the a priori calculation of 
probable bond lengths has not received much attention 
and, in fact, little progress was made on this problem 
until it was examined from a graph-theory viewpoint, 
starting with the observation of Mackay & Finney 
(1973) that the solution might have certain formal 
parallels to the use of Kirchhoff's Laws in the solution 
of electrical-network problems. This was followed by 
some work of Brown (1977) using iterative methods, 
which led in turn to the graph-theoretical analysis of the 
work of Mackay and Finney and of Brown given in the 
previous paper in this series (Rutherford, 1990). About 
the same time O'Keeffe (1989) reviewed the earlier 
work, and provided further insight and analysis of his 
own. O'Keeffe supported Brown's 'Equal-Valence 
Rule': subject to no other constraints, bonds from an 
atom strive to be as equal in valence as possible. Brown 
(1989) pointed out that his Equal-Valence Rule gave 
results equivalent to O'Keeffe's 'Ring-Sum Rule' and 
has since (Brown, 1992) shown formally that the two 
approaches are mathematically equivalent. Rutherford 
(1990) found that for examples not sufficiently 
symmetric to be trivial, there are an infinite number of 
solutions to the bond-valence network problem, 
including two special cases, one corresponding to the 
method of Mackay & Finney (1973) and the other to 
that of Brown (1977) and O'Keeffe (1989). Both special 
cases correspond to specific constraints on the bond 
valences in addition to the basic sum requirement; they 
operate in the network system in the same way as the 
Kirchhoff voltage law does in the electrical case, that is, 
in terms of the cycles present in the chemical graph of 
the structure. 

2. The graph-theory approach 
For a crystal the true chemical graph is very large. 
However, we can represent the crystal structure by a 
finite graph of N vertices (atoms) and m edges (bonds), 
corresponding to the motif of the structure, and then 
convert the graph thus formed to a weighted multi- 
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Table 1. Observed and calculated bond valences for  K2'3-based structures 

KVO3 /3-Ga203 
Bond valences Bond valences 

Edge Algebraic form u Obs EVR RBN Stat u Obs EVR RBN Star 

a (fl - f2  + 1)/3 + 2x 2 0.99 1.12 0.93 0.89 1 0.72 0.68 0.71 0.85 
b (fl + 1)/3 - x - y 1 1.47 1.38 1.57 1.61 1 0.83 0.83 0.86 0.90 
c (fl + 1)/3 - x + y 1 1.50 1.38 1.57 1.61 2 0.76 0.75 0.71 0.62 
d f2 - 2x 2 0.17 -0.12 0.07 0.11 3 0.41 0.44 0.43 0.38 
e x + y 4 0.11 0.15 0.11 0.10 2 0.51 0.59 0.57 0.55 
f x - y 4 0.08 0.15 0.11 0.10 1 0.57 0.51 0.57 0.75 
a 0.07 0.13 0.07 0.08 0.04 0.05 0.04 0.11 

Abbreviations: Obs: observed value averaged over the u components; EVR: the graph-matrix method using the Equal-Valence Rule; RBN: 
resonance-bond-number method; Star: the graph-matrix method using statistical weighting; tr: standard deviation of the calculated bond 
valences from the individual observed values; a(Obs): standard deviation of the best-fit Valence-Sum Rule values of the bond valences from the 
individual observed values. 

graph,  in which  each  of  the  M mul t ip le  edges,  with 
individual  weights  ui, c o r r e s p o n d  to the  u; bonds  f rom 
one  a t o m  to s y m m e t r y - e q u i v a l e n t  vers ions  of  a second.  
This mul t ig raph  represen t s  the  limit of  possible  
p red ic t ion  of  the  b o n d - v a l e n c e  dis t r ibut ion,  because  we 
have  no  way of  d is t inguish ing  individual  b o n d  compo-  
nen t s  of  each  mul t ig raph  edge,  but  can only m a k e  a 
p red ic t ion  rega rd ing  their  sum, based  on a k n o w l e d g e  
of these  weights.  This l imi ta t ion prov ides  an impor t an t  
s tep in s implifying the  overal l  solut ion.  The  mul t ig raph  
is assoc ia ted  with a so lu t ion  space  of (M - N + 1) 
d imens ions ,  as desc r ibed  by R u t h e r f o r d  (1991). 

Now, (M - N + 1) is also the  cyclomat ic  n u m b e r  of  
the  mul t ig raph ,  i.e. the  n u m b e r  of  cuts r equ i r ed  to 
r educe  it to a tree. This m e a n s  that  w h e n  we descr ibe  
the  solu t ion  space in te rms of  (M - N + 1) variables,  
say x, y etc., each  of these  var iables  can be associa ted  
with a specific basis vec tor  in s o m e  r e p r e s e n t a t i o n  of  
the  cycle space of the  d i r ec t ed  mul t igraph.  For example ,  
the  graph  K 2"3 in Fig. 1 has six edges  and  so a cycle is 
r e p r e s e n t e d  by a vec tor  with six e lements ,  which may  
have  the  values - 1 ,  0 or  1. The  f u n d a m e n t a l  cycle 
mat r ix  C for this graph,  as given in R u t h e r f o r d  (1990), 
is (af ter  r ever t ing  to a lphabe t ic  o rde r  for the  edges) :  
[110110/011011]. F rom this we can extract  the  two basis 
vectors  ul = [110110] and  u2 = [011011], which corre-  
s p o n d  t o c y c l c s  1 -+  3 - +  2 - +  4 - +  l a n d  1 ~ 4 - +  2 
--~ 5 --~ 1, respectively.  H o w e v e r ,  to reflect the  possible  
s y m m e t r y  in the  p rob lem,  we ins tead  chose  an or tho-  
gonal  pair  of  basis vectors,  one  of which  t rans forms  
symmet r ica l ly  u n d e r  a specific g raph  a u t o m o r p h i s m  
( p e r m u t a t i o n  of ver t ices  4 and  5), and  the  o the r  anti-  
symmetr ical ly .  These  are 

w I = 2U 1 -I-- II 2 -- [211211] 

and 

w2 = - n 2  = [ 0 i 1 0 1 ~ 1 .  

P a r a m e t e r  x in Table 1 re la tes  to wl and  y to w2. This 
choice  of  basis ensures  y is zero  if ver t ices  4 and  5 are 

equiva len t .  Most  p r o b l e m s  may  be simplif ied by 
apply ing  s y m m e t r y  in a s imilar  way. 

Also,  it shou ld  be n o t e d  that  the  f u n d a m e n t a l  
cons t ra in ts  r ema in  the  same  for any mul t ig raph  based  
on the  same pa t t e rn  of  ver t ices  and  edges  and,  there-  
fore,  may  be re la ted  for a n u m b e r  of  s t ructures  with the  
same  s toichiometry .  

3.  R e s o n a n c e  b o n d  n u m b e r s  

This approach ,  as d e v e l o p e d  by Boisen  et al. (1988), 
effect ively  ignores  the  per iodic i ty  of  the  p rob lem.  The  
calculat ions  for each  a tom are based  on a ' pa t t e rn  
graph ' ,  a subgraph  of the  per iod ic  chemica l  g raph  
se lec ted  on the  basis of  a graph dis tance  of 3, and  

Fig. 1. The graph K 2"3 showing the labelling used in Table 1. 
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specifically omit any non-nearest-neighbour interac- 
tions, such as the type represented by the Dewar 
resonance structures for benzene. The totality of Lewis 
graphs (arrangements of electron-pair bonds) which are 
allowed by these restrictions is then derived and the 
(equally weighted) average resonance bond number is 
calculated. This method seems to be highly successful, 
but it is certainly cumbersome, involving perhaps 10 7 to 
108 Lewis graphs per atom. It also lacks any obvious 
way of being programmed and contains certain inherent 
inconsistencies which arise from the localized nature of 
the model. These are that different values may be 
calculated for the same bond, depending on the central 
atom used for the pattern graph, and that a single 
pattern graph will normally contain bonds which are 
equivalent, either by crystallographic or graph 
symmetry, but for which different resonance bond 
numbers are calculated. However, the approach has the 
one strength that it would be equally applicable to 
glasses as to crystalline solids. 

3.1. Simpl i f i ed  resonance  b o n d  n u m b e r  ( R B N )  

We can interpret the resonance bond number in 
terms of the configuration space introduced above. By 
their very construction individual Lewis graphs will 
satisfy the bond-valence constraints; that is, they will 
correspond to points within the solution space of the 
problem. An extreme point of this solution space will 
normally correspond to a periodic Lewis graph where 
the same arrangement of bonds is repeated in each unit, 
or to several such periodic graphs which are multigraph 
equivalent. The assumptions made in reducing the 
Lewis graphs on pattern graphs to their equivalents on 
the finite multigraph are discussed in Rutherford 
(1991). In this process the resonance bond number 
becomes an average over the distribution of such 
extremal Lewis graphs within the solution space of the 
multigraph. 

The possible Lewis graphs can be enumerated 
through the generating function 

M 

F = l - I(1 - eivuv2,)-", , 
i= l  

where ei is a dummy variable representing the edge i, 
and Vu and v2; are the vertices it joins. This is the P61ya 
figure-generating function (P61ya & Read, 1987) 
applied to a multigraph based on a labelled and, 
therefore, asymmetric pattern graph as the frame. 
However, in addition to the usual edge functions, we 
introduce associated vertex functions so that the edge 
property of figure content may be transformed into the 
vertex property of degree. The generating function may 
be expanded as a product of m formal infinite series, 
where m is the number of edges of the multigraph, to 

give 
M 

F = l'-I(1 + eivliv2i + [eivaiv2i] 2 + ...)u, 
i=1 

= 1 + [(u, + r -  1 ) ! / ( u , -  1)!r![eivaiv2,] r . 
i=1 r= l  

Valid Lewis graphs are enumerated by those terms 
which have the degree of each vertex, as measured by 
the power of the corresponding vertex function, equal 
to the appropriate valence. In addition, the arrange- 
ments of bonds on the edges of the graph, termed the 
figure content by P61ya & Read (1987), are represented 
by powers of the edge functions, with the effect that the 
combined coefficient of any individual term in the 
vertex-function powers forms a pattern inventory of 
Lewis graphs for that arrangement of atom valences. 

As an example, the generating function for KVO3 is 
(Rutherford, 1991) 

F = (1 - eaVlV3)-l(1 -- ehv l v4 ) - l ( l  -- ecVlVs) -2 

× (1 -- eav2v3)-4(1 -- eeV2V4)-4(1 -- etv2v5) -2, 

where vl is V, v2 is K and the remaining vertices are O. 
The coefficient of the relevant term, namely that in 

V~V2 2 2 2 is V3V4V 5 , 

2 2  2 2 2 2  [12eaeheced + 12Gebecee + 4Gebecet].  

This inventory of Lewis graphs indicates that there are 
28 possible arrangements in all, while the first term in 
the coefficient, for example, shows that 12 of them have 
edge a as a single bond, edge b as a double bond, edge c 
as some arrangement of either two single bonds or one 
double bond, and one component of edge d as a single 
bond. 

No computer was used for the calculations by this 
method; however, a system capable of manipulating 
symbols could well be used to extract the required 
coefficient from the generating function. 

4. Graph-matrix method 

For the sake of clarity it is useful to establish the exact 
relationship of the electrical-network and bond-valence 
cases by stating them both in terms of a more general 
problem on a directed graph. 

We have two properties ai and o'i of each edge i, such 
that they are proportional to each other with a known 
coefficient 3i. That is, o'1 = 3,a, or, in matrix terms 

cr = a ~ ,  (1) 

where A is a diagonal matrix of the coefficients ~,. We 
also consider two further sets of equations, one repre- 
senting a constraint on the vertices of the graph 

Bc~ = 13 (2) 
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and the other on its circuits or loops 

C'~ = Y, (3) 

where B is the incidence matrix of the graph and C its 
fundamental cycle matrix. These terms and others 
below are explained in Bollob~s (1979) and Rutherford 
(1990). We then seek values o~i and o-i, which are solu- 
tions to this system of equations. We first combine (1) 
and (3) to give 

CtAot = F. (4) 

Then, applying the methods used previously, we find 
that the solution to this more general problem is 

0~ = [I -- C(CtAC)- IC 'A]B¢/3  + C(C 'AC)-I× ,  (5) 

where I is the identity matrix and BT is the incidence 
matrix of a spanning tree of the graph. This result 
includes both real problems as special cases: for the 
electrical networks /3 = 0, while for the bond-valence 
networks y = 0.t 

We may now look at the practical application of the 
bond-valence result. Rutherford (1991) concluded that 
it was possible to generate a wide variety of bond- 
valence predictions for a particular graph (and hence 
crystal structure) based on differing values of the matrix 
elements corresponding to A. This is the matrix which 
represents the resistances in the electrical-network case 
and which arises not from Kirchhoff's laws, but from 
Ohm's  law, (1) in our formulation. Through this law we 
can predict how the overall result is affected by linking 
two vertices by different numbers, n, of identical lengths 
of wire. The resistance Rii varies as 1/n in such a case. In 
general, the matrix element 3i behaves in this way if it 
represents a property of an edge component which is 
invariant to its position in the graph, which is the case 
for O'Keeffe 's  'Ring-Sum Rule' and Brown's 'Equal- 
Valence Rule'. 

In order to see that such 'ohmic' behaviour, however 
intuitive, is inappropriate in the bond-valence case, we 
must recognize that a further set of constraints operates 
in that system, namely the requirement that the value of 
each individual bond valence must be positive. This is 
different from the electrical-network case, where the 
current in a particular edge may have either sign (flow 
in either direction). 

4.1. Equal-Valence Rule (EVR) 

The calculations were carried out according to 
Rutherford (1990), except that the distance matrix was 
derived from successive powers of the adjacency matrix, 

t In fact, O'Keeffe (1989) attempted to make the two problems 
equivalent by constructing a new graph which interchanges the role of 
vertices and cycles: however, he admits he is unable to describe a 
general procedure. An approach based on the familiar form of the 
chemical graph is clearly preferable. 

a computationally more efficient method than by that 
used previously. 

4.2. Statistical weighting (Stat) 

The calculations are identical to EVR above, except 
for the input values of the weight matrix A. Rutherford 
(1991) suggested 

6 i = {2[ (1 -  f~)/2] 1/''' - f ~ ] / { 1 - f / ] ,  

where 3i is the appropriate element of the weight matrix 
and f~ = Vmin/Vmax, the ratio of extreme valence values 
possible for that bond. The intention was to represent 
that part of the bond-valence variation that may be 
predicted from the Valence-Sum Rule and graph 
connectivity alone, without recourse to any bonding 
model whatsoever. However, this weighting would be 
equivalent to the more general form of the resonance 
method, provided we could make the clearly unwar- 
ranted assumption that the distribution of Lewis graphs 
is uniform over the (m - N + 1)-dimensional total 
configuration space, at least when measured on a 
sufficiently coarse scale. 

5. Examples 

The intention in this section is to apply the various 
calculation schemes to a number of known structures, in 
order to compare their effectiveness as predictors. For 
each example the best fit of the experimental results to 
an (M - N + 1)-parameter model is included, as this 
represents the best possible prediction within the 
constraints. 

In order to be a suitable example a crystal structure 
must be sufficiently simple to allow the algebraic 
analysis to be carried out and yet have the number of 
free parameters (M - N + 1) non-zero, so that the 
various schemes will lead to different results. O'Keeffe 
(1989) and Rutherford (1990) have both noted that the 
fraction of structures with both these properties is 
small. In addition, such test examples should involve (if 
possible) large variations in atom valence, coordination 
number and the number u of multigraph equivalent 
bonds, as it is these factors which produce the differ- 
ence in results between the different models. 

All observed interatomic distances were converted to 
bond valences using the form 

V -- e x p { - ( R -  Ro)/b } 

and the parameters of either Krebs & Paulat (1976), for 
YeI4 only, or Brown & Altermatt  (1985). For each 
example the methods were compared by calculation of 
the standard deviation of the predicted bond valence 
from their observed values; the equivalent standard 
deviation of an arbitrary 'best-fit' Valence-Sum Rule 
model was also calculated as a benchmark. 
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Table 2. Observed and calculated bond valences for Te4116 

Bond valences 
Edge type Algebraic form u Obs. EVR RBN Stat 

a 1 1 1.00 1.00 1.00 1.00 
b x 1 0.38 0.20 0.27 0.25 
c (1 + x)/2 1 0.64 0.60 0.64 0.63 
d (1 - x)/2 1 0.32 0.40 0.36 0.38 
a 0,02 0.05 0.03 0.03 

Abbreviations: see Table 1. 

5.1. KV03 

This structure (Evans, 1960) was used as an example 
by Ruther ford  (1990). The bond valences calculated by 
the various schemes are indicated in Table 1. 

5.2. ~-Ga203 

This structure (Geller,  1960) was used by O'Keeffe  
(1989) as one of his examples. It is very interesting in 
that, al though there are only G a - O  bonds, the struc- 
ture contains both four- and six-coordinated Ga, and 
distinct u, values of 1, 2 and 3. As with KVO3, it is based 
on K 2"3, but the multigraph is now asymmetric, so that 
non-zero values of both parameters  x and y are 
predicted, giving six distinct bond valences in all. Such 
is the character  of this example that to simply predict 
the correct order  of these six bond lengths is a stringent 
test of the model.  

The solution space for the parameters  x and y is 
shown in Fig. 2; it is subdivided by lines corresponding 
to the various possible equalities between pairs of these 
six bond valences. It shows that 54 different bond- 
length sequences are possible within the constraints of 

1 

q~0 

-1 
0.6 0.8 I 1'.2 1'.4 

Fig. 2. Tl~e location of the various models within the solution space for 
/3-Ga203. A Observed bond lengths; B Equal-Valence Rule; C 
resonance bond number; D statistical weighting. 

the Valence-Sum Rule and that the resonance approach 
is best at predicting the correct sequence. Again, the 
numerical  results are given in Table 1. 

5.3. Tel4 

This structure (Krebs & Paulat, 1976) is included 
because it was used by Brown (1977) as one of his 
examples. Al though it is a binary compound with a very 
unusual range of connectivities and iodine coordinat ion 
numbers, it is perhaps out-of-place in being a molecular  
(We4116) rather  than an infinite lattice complex. The 
connectivity of this molecule is shown Fig. 3 and the 
results given are in Table 2. Despite this problem being 
defined (after considerat ion of the graph symmetry) by 
one parameter  only, none of the approaches are parti- 
cularly close to the observed bond-valence arrange- 
ment,  despite the Valence-Sum Rule being closely 
observed in this compound.  In particular, this applies to 
the resonance-bond method,  even though the counting 
of Lewis graphs can be performed exactly, ra ther  than 
being a statistical process. These difficulties may arise 
ei ther because the molecular  nature of this compound 
introduces addit ional  geometric constraints not present 
in infinite networks or from electronic distortions of 
Te TM 

I-~ /ajl 
Tc 

/ l a/l 
i ~Fe c I I ----'-£-'~ Tc a-"-'-'~ I 

/ ~d ~ T e ~  / ~k~ 
a d d I 

I \1 b t I 

l . . . y  ~ " - ' - Z ~  i 

Fig. 3. The connectivity of the molecule Te4It6, showing the labelling 
used in Table 2. 
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Table 3. Observed and calculated bond valences for Li2X03 compounds 

Bond valences 
Edge expression Algebraic u X = Si S = Ge EVR RBN Stat 
Li--O1 x 3 0.26 0.26 0.30 0.28 0.29 
Li--O2 2 - x 1 0.16 0.16 0.10 0.18 0.14 
X--O1 4 - x 1 1.12 1.13 1.10 1.18 1.14 
X--O2 x 2 0.86 0.83 0.90 0.83 0.86 
a(Si) 0.02 -- 0.04 0.03 0.03 
a(Ge) -- 0.02 0.05 0.03 0.03 

Abbreviations: see Table 1. 

5.4. Li2Si03 and Li2Ge03 (Hesse, 1977; Vollenkle & 
Wittmann, 1968) 

These compounds  are isostructural and the experi- 
mental  distributions of bond valence are very similar in 
the two cases. This example was used by O'Keeffe  
(1989). In this case the mult igraph corresponding to the 
formula unit has inherent  symmetry and may be 
simplified further  for the purposes of the graph-matrix 
approach,  in this case by folding the equivalent  port ions 
over on each other  like the pages of a book. In order  to 
give the correct result the merging of two equivalent  
vertices must double their  valence, but keep the edge 
multiplicities the same. This is il lustrated in Fig. 4. 
However,  this simplification cannot  be applied to the 
resonance method,  because it is absolutely necessary to 
distinguish between the equivalent  vertices in counting 
the Lewis graphs. The numerical  results for this 
example are given in Table 3. 

5.5. CaCrF5 (Wu & Brown, 1976) 

This is another  case where the formula unit has 
inherent  graph symmetry; if the mult igraph shown in 
Fig. 5 is folded over on itself about  the centre line, a 
mult igraph based on g 2"3 again results. Table 4 gives the 
results for this compound;  here, the correct trends in 
C r - - F  and C a - - F  bond lengths are reasonably 
predicted by all approaches. 

6. Conclusions 

In most cases the Valence-Sum Rule applies to the 
interatomic distances in a crystal structure and only a 

Li 02 Li 2Li 02 

O1 Si O1 201 

(a) (b) 

Fig. 4. The (a) ' open '  and (b) 'closed'  forms of the Li2SiOs graph. 

Table 4. Observed and calculated bond valences for 
CaCrF5 

Bond valences 
Edge type u Obs EVR RBN Star 

Cr - -  F1 2 0.47 0.41 0.43 0.38 
Cr- -  F2 1 0.49 0.48 0.47 0.51 
Cr- -  F3 1 0.60 0.61 0.60 0.61 
Ca- -F1  1 0.17 0.19 0.13 0.24 
Ca - -F2  2 0.26 0.26 0.27 0.25 
Ca- -  F3 1 0.37 0.39 0.40 0.39 
a 0.03 0.03 0.03 0.05 

Abbreviations: see Table 1. 

small part of the observed variat ion arises from 
geometrical  constraints. The rule fails, however,  not  
only for ceramic superconductors  (Brown, 1989, 1990), 
but also for o ther  structures with highly coordinated  
cations such as K in its hydroxylamine-N,N-disulfonate  
salt (Ruther ford  et al., 1988) and in many cases of 
hydrogen bonding (Brown, 1978). Such cases have been 
discussed by Brown (1992). Nevertheless, the major  
source of variat ion in bond lengths in most structures 
depends on the overall connectivity of the atoms in the 
structure and is, in principle, predictable in terms of the 

( 

FI 

Fig. 5. The CaCrF5 graph. 
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chemical graph. For this reason, those at tempts at 
predict ion which have met with any degree of success 
have so far all included some elements of graph theory. 

However,  no single approach has been entirely 
satisfactory. The Equal-Valence Rule does not repre- 
sent the opt imum solution in cases of large charge 
variation, where some sort of average over the 
permit ted configurations is preferable. Overall,  the 
resonance bond-number  method appears best, with the 
s tandard deviat ion cr consistently within 0.01 valence 
units of the 'best-fit ' value. This result suggests that the 
future direction in this area should be to improve the 
resonance approach so that it becomes as easy to apply 
as the graph-matrix formulat ion is at present. 

I wish to thank both anonymous  referees for 
suggesting significant improvements.  
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